Как сделать смд паяльник

Сделай сам своими руками О бюджетном решении технических, и не только, задач.

Паяльник для пайки SMD компонентов из доступных деталей

01

Это инструкция по изготовлению и сборке миниатюрного паяльника, пригодного для пайки SMD и других мелких компонентов современной радиоаппаратуры.

Самые интересные ролики на Youtube

Видео для тех, кто считает, что лучше один раз увидеть.

Если вам лень читать статью, приступайте сразу к просмотру видеоролика, в котором показан процесс изготовления паяльника, его сборка и испытания. Хотя, некоторые технические подробности освещены только в статье. Продолжительность видеоролика 8 минут, разрешение Full HD. Есть субтитры.

Пролог

02 t

Я уже недавно представлял на суд зрителя подобную конструкцию паяльника, но c вдвое меньшей мощностью. Это был сверхминиатюрный паяльник, позволяющий производить самые мелкие работы, такие как, например, ремонт шлейфов. Подробности об этом изделии можно найти здесь>>>

К сожалению, конструкция эта оказалась слишком сложной для повторения, так как требовала изготовления всяких замысловатых деталей, а также специальной оснастки для изготовления нагревательного элемента. Поэтому я решил значительно упростить самоделку, но вместе с этим повысить КПД изделия.

03 t

Тут уместно доложить, что несколько дней экспериментов с нагревательными элементами на основе резисторов МЛТ доказали полную несостоятельность этой конструкции, хотя она довольно широко представлена самодельщиками в сети Интернет.

Лишь один резистор из пяти позволил довести температуру жала до 400°С и то, только в течении одного цикла включения/выключения. При очередном включении он отказал. Другие резисторы не позволили получить температуру выше 250°С и выходили из строя во время одного или двух коротких циклов.

04 t

Исследование вышедших из строя резисторов показало, что обрыв плёночного резистивного элемента происходит по внешнему периметру той или другой контактной чашки. Вы можете это проверить и сами, если подключите резистор к блоку питания и с помощью вольтметра определите место наивысшего падения напряжения.

Но, не стоит унывать, изготовление паяльника на основе резистора МЛТ тоже довольно трудоёмкая работа, так как доработка самого резистора требует даже примитивной токарной обработки. А представленную ниже конструкцию можно повторить чуть ли ни на коленке.

Паяльник из консервной банки

05 t

Это эскиз малогабаритного паяльника для пайки SMD компонентов р/а. По нему и был собран этот паяльник.

Деталировка

06 t

Ручка паяльника была изготовлена из ручки от скакалки. К сожалению, ручка оказалась без сквозного отверстия, и его пришлось просверлить. В видеоролике показано, как это можно сделать.

07 t

В эскиз были заложены саморезы в качестве крепёжных элементов крепления корпуса и кабеля, но у меня дома не нашлось таких мелких шурупчиков. Поэтому я использовал пустотелые заклёпки, в которых нарезал резьбу.

08 t

Полученные таким образом резьбовые втулки и пружинку от шариковой ручки я вклеил эпоксидным клеем в отверстия, просверленные в ручке. Если вы будете использовать саморезы, то желательно под них тоже просверлить отверстия, чтобы ручка не растрескалась.

09 t

Каркасом паяльника является небольшая трубка, согнутая из жести от консервной банки. В качестве шаблона для гибки трубки использован отрезок медной проволоки диаметром 2,5мм. Эта же проволока послужила заготовкой для изготовления жала паяльника. При использовании проволоки другого диаметра, придётся внести поправку в чертёж развёртки каркаса.

10 t

Корпус паяльника тоже изготовлен из жести толщиной 0,3мм от консервной банки.

16 t

11 t

А это чертёж развёрток: корпуса, каркаса и замыкателя. Четрёж можно приклеить к жести и использовать в качестве шаблона для обрезки контура и разметки отверстий. Под превьюшкой находится чертёж в формате А4. Масштаб чертежа 1:1, разрешение 300 пикселей на дюйм.

Технические данные и расчёт нагревательного элемента паяльника

Пара слов перед цифрами.

Малогабаритный паяльник должен быть низковольтным просто потому, что чем меньше размер нагревательного элемента, тем сложнее обеспечить электробезопасность. Это обусловлено конечной электрической прочностью воздушной изоляции.

Кроме этого, незначительная длина нихромового провода, из которого изготавливается низковольтный нагреватель, позволяет применить однослойную намотку. Нагреватель такой конструкции имеет лучшую теплоотдачу и более прост в изготовлении. В первую очередь это связано с тем, что каждый очередной слой нагревателя требует использования термостойкой прокладки, которая обладает более низкой, чем у металла теплопроводностью.

Читайте также:  Как сделать рентген в mkx

Предполагается, что температура паяльника будет регулироваться за счёт изменения напряжения питания, например, с помощью любительского лабораторного блока питания.

Рассчитаем сопротивление спирали для паяльника с номинальным напряжением 12 Вольт.

Напряжение питания – 0…12 Вольт,

Сопротивление нагревателя при этом будет равно:

R = U²/P, где:

R – сопротивление в Омах,

U – напряжение питания в Вольтах,

P – мощность нагревателя в Ваттах.

R = 12²/15 = 9,6 (Ом)

12 t

Нихромовый провод подходящего диаметра я получил, разобрав десятиваттный резистор С5-5-10Ватт на 160 Ом. Внутри оказался провод диаметром 0,17мм.

Кстати, металлический корпус от этого же резистора я применил при изготовлении миниатюрного паяльного фена>>>

Нихромовый провод я не отжигал, так как расчётная длина провода позволила намотать витки с некоторым зазором (шагом). Если вам попадётся более толстый провод, и расстояние между витками будет слишком мало, то провод придётся отжечь до образования окалины. Подробнее об этом рассказано здесь>>>

Определить длину провода можно с помощью омметра. У меня получилось около 140мм.

Количество витков спирали нагревателя определяем так:

ω = L/(π*(D+d)), где:

ω – количество витков,

D – диаметр каркаса вместе с изолирующей слюдяной прокладкой,

d – диаметр провода.

ω = 140/(3,14*(3,6+0,17)) ≈ 12 (витков)

Паяльник описанной конструкции может обеспечить температуру на конце жала свыше 500°С. Время достижения температуры 350°С около одной минуты.

Сборка паяльника

13 t

Спираль нагревательного элемента намотана на каркасе из жести. Между каркасом и спиралью проложена прокладка из слюды (или стекломиканита). Чтобы пластинка слюды не рассыпалась при намотке спирали, она была наклеена на лоскут стеклоткани. С внешней стороны спираль также изолирована несколькими слоями стеклоткани.

На выводы спирали одета трубка из стеклоткани, позаимствованная у выброшенной соседями электроплиты.

14 t

Для обеспечения равномерной стяжки нагревателя жестяной обечайкой, в разрыв обечайки вставляется небольшой жестяной замыкатель. Он предотвращает выдавливание стеклоткани в зазор обечайки.

15 t

А это самодельный паяльник для пайки SMD деталей в собранном виде. Небольшое расстояние между передним краем ручки и концом жала обеспечивает необходимую точность позиционирования жала при монтаже мелких радиодеталей.

Близкие темы

01
Мощный паяльный фен своими руками
01
Миниатюрный паяльник своими руками
01
Миниатюрный паяльный фен своими руками

Комментарии (52)

Страниц: « 1 2 3 4 5 [6] Показать все

Сейчас думаю-зачем тратить время, лучше заказать у китайцев с LiIon или LiFe аккам. + у него зарядка аккум. как от сотового.

Из-за превышения максимального количества сообщений, обсуждение перенесено в форум>>>

Страниц: « 1 2 3 4 5 [6] Показать все

Источник

Пайка SMD компонентов в домашних условиях

Многие задаются вопросом, как правильно паять SMD-компоненты. Но перед тем как разобраться с этой проблемой, необходимо уточнить, что же это за элементы. Surface Mounted Devices – в переводе с английского это выражение означает компоненты для поверхностного монтажа. Главным их достоинством является большая, нежели у обычных деталей, монтажная плотность. Этот аспект влияет на использование SMD-элементов в массовом производстве печатных плат, а также на их экономичность и технологичность монтажа. Обычные детали, у которых выводы проволочного типа, утратили свое широкое применение наряду с быстрорастущей популярностью SMD-компонентов.

Ошибки и основные принцип пайки

Некоторые умельцы утверждают, что паять такие элементы своими руками очень сложно и довольно неудобно. На самом деле, аналогичные работы с ТН-компонентами проводить намного труднее. И вообще эти два вида деталей применяются в различных областях электроники. Однако многие совершают определенные ошибки при пайке SMD-компонентов в домашних условиях.

image001 30SMD-компоненты

Главной проблемой, с которой сталкиваются любители, является выбор тонкого жала на паяльник. Это связано с существованием мнения о том, что при паянии обычным паяльником можно заляпать оловом ножки SMD-контактов. В итоге процесс паяния проходит долго и мучительно. Такое суждение нельзя считать верным, так как в этих процессах существенную роль играет капиллярный эффект, поверхностное натяжение, а также сила смачивания. Игнорирование этих дополнительных хитростей усложняет выполнение работы своими руками.

image003 29Пайка SMD-компонентов

Чтобы правильно паять SMD-компоненты, необходимо придерживаться определенных действий. Для начала прикладывают жало паяльника к ножкам взятого элемента. Вследствие этого начинает расти температура и плавиться олово, которое в итоге полностью обтекает ножку данного компонента. Этот процесс называется силой смачивания. В это же мгновение происходит затекание олова под ножку, что объясняется капиллярным эффектом. Вместе со смачиванием ножки происходит аналогичное действие на самой плате. В итоге получается равномерно залитая связка платы с ножками.

Читайте также:  Как сделать каблуки для кукол монстер хай

Контакта припоя с соседними ножками не происходит из-за того, что начинает действовать сила натяжения, формирующая отдельные капли олова. Очевидно, что описанные процессы протекают сами по себе, лишь с небольшим участием паяльщика, который только разогревает паяльником ножки детали. При работе с очень маленькими элементами возможно их прилипание к жалу паяльника. Чтобы этого не произошло, обе стороны припаивают по отдельности.

Пайка в заводских условиях

Этот процесс происходит на основе группового метода. Пайка SMD-компонентов выполняется с помощью специальной паяльной пасты, которая равномерно распределяется тончайшим слоем на подготовленную печатную плату, где уже имеются контактные площадки. Этот способ нанесения называется шелкографией. Применяемый материал по своему виду и консистенции напоминает зубную пасту. Этот порошок состоит из припоя, в который добавлен и перемешан флюс. Процесс нанесения выполняется автоматически при прохождении печатной платы по конвейеру.

image005 27 e1495822428164Заводская пайка SMD-деталей

Далее установленные по ленте движения роботы раскладывают в нужном порядке все необходимые элементы. Детали в процессе передвижения платы прочно удерживаются на установленном месте за счет достаточной липкости паяльной пасты. Следующим этапом происходит нагрев конструкции в специальной печи до температуры, которая немного больше той, при которой плавится припой. В итоге такого нагрева происходит расплавление припоя и обтекание его вокруг ножек компонентов, а флюс испаряется. Этот процесс и делает детали припаянными на свои посадочные места. После печки плате дают остыть, и все готово.

Необходимые материалы и инструменты

Для того чтобы своими руками выполнять работы по впаиванию SMD-компонентов, понадобится наличие определенных инструментов и расходных материалов, к которым можно отнести следующие:

Использование флюса просто необходимо, и он должен быть жидким. В таком состоянии этот материал обезжиривает рабочую поверхность, а также убирает образовавшиеся окислы на паяемом металле. В результате этого на припое появляется оптимальная сила смачивания, и капля для пайки лучше сохраняет свою форму, что облегчает весь процесс работы и исключает образование «соплей». Использование спиртового раствора канифоли не позволит добиться значимого результата, да и образовавшийся белый налет вряд ли удастся убрать.

image009 25Припой для пайки

Очень важен выбор паяльника. Лучше всего подходит такой инструмент, у которого возможна регулировка температуры. Это позволяет не переживать за возможность повреждения деталей перегревом, но этот нюанс не касается моментов, когда требуется выпаивать SMD-компоненты. Любая паяемая деталь способна выдерживать температуру около 250–300 °С, что обеспечивает регулируемый паяльник. При отсутствии такого устройства можно воспользоваться аналогичным инструментом мощностью от 20 до 30 Вт, рассчитанным на напряжение 12–36 В.

Использование паяльника на 220 В приведет к не лучшим последствиям. Это связано с высокой температурой нагрева его жала, под действием которой жидкий флюс быстро улетучивается и не позволяет эффективно смачивать детали припоем.

Специалисты не советуют пользоваться паяльником с конусным жалом, так как припой трудно наносить на детали и тратится уйма времени. Наиболее эффективным считается жало под названием «Микроволна». Очевидным его преимуществом является небольшое отверстие на срезе для более удобного захвата припоя в нужном количестве. Еще с таким жалом на паяльнике удобно собирать излишки пайки.

image011Жало для паяльника «Микроволна»

Использовать припой можно любой, но лучше применять тонкую проволочку, с помощью которой комфортно дозировать количество используемого материала. Паяемая деталь при помощи такой проволочки будет лучше обработана за счет более удобного доступа к ней.

Как паять SMD-компоненты?

Порядок работ

Процесс пайки при тщательном подходе к теории и получении определенного опыта не является сложным. Итак, можно всю процедуру разделить на несколько пунктов:

При выполнении аналогичных действий с микросхемой процесс пайки немного отличается от вышеприведенного. Технология будет выглядеть следующим образом:

Как паять при помощи фена?

При таком способе пайки необходимо смазать посадочные места специальной пастой. Затем на контактную площадку укладывается необходимая деталь — помимо компонентов это могут быть резисторы, транзисторы, конденсаторы и т. д. Для удобства можно воспользоваться пинцетом. После этого деталь нагревается горячим воздухом, подаваемым из фена, температурой около 250º C. Как и в предыдущих примерах пайки, флюс под действием температуры испаряется и плавится припой, тем самым заливая контактные дорожки и ножки деталей. Затем отводится фен, и плата начинает остывать. При полном остывании можно считать пайку оконченной.

Читайте также:  Как сделать мобиль для кроватки своими руками

image016 9Фен для паяния мелких деталей

Источник

Монтаж и пайка SMD-компонентов

Даже если тебе никогда в жизни не придётся самостоятельно иметь дело с чип-деталями, надо понимать, что 99% всей современной электроники создаётся именно на их основе. Поэтому каждый уважающий себя радиолюбитель должен хотя бы в общих чертах представлять SMD-техпроцесс.
В предыдущем уроке мы уже познакомились с так называемыми SMD-компонентами (чип-компонентами). Сейчас же пришло время узнать, как осуществляется их монтаж и пайка.
Можно припаять SMD-деталь и с помощью самого обычного припоя и паяльника с тонким жалом. Процесс состоит из трёх шагов:

— наносим припой на одну контактную площадку;
— с помощью пинцета устанавливаем чип-компонент на нужную позицию и, удерживая деталь пинцетом, прогреваем один из его выводов. Деталь зафиксирована, пинцет можно убрать;
— припаиваем второй вывод компонента.

Ручная пайка SMD-компонентов

Примерно таким же образом можно паять SMD-транзисторы и микросхемы.

Но ручная пайка – это очень долгий и кропотливый процесс, поэтому применяется только радиолюбителями для создания единичных конструкций. На крупных радиозаводах всё стараются автоматизировать. Поэтому там никто не паяет каждую деталь по отдельности паяльником, процесс совершенно другой.

Ты уже знаешь, что такое припой: гибкая оловянно-свинцовая проволока, которая при нагреве паяльником расплавляется, а после остывания застывает и надёжно фиксирует вывод радиодетали, обеспечивая при этом электрический контакт. Но припой может быть не только в виде оловянно-свинцового прутка. Можно создать припой в виде пасты, которая так и называется – паяльная паста. Паста содержит в своём составе и флюс, и мельчайшие частички олова. При нагреве паста расплавляется, а после остывания застывает, обеспечивая электрический и механический контакт.

Паяльная паста наносится на все контактные площадки. При производстве опытных образцов и мелкосерийных партий пасту наносят с помощью ручных дозаторов: шприцом, например, или даже зубочисткой. Но при крупносерийном производстве используется другая технология нанесения пасты. Сначала изготавливается трафарет: тонкий лист из нержавеющей стали, в котором имеются отверстия, точно совпадающие с контактными площадками печатной платы. Трафарет прижимается к печатной плате, сверху наносится слой паяльной пасты и разравнивается специальным шпателем. Затем трафарет поднимается, и таким образом буквально за пару секунд паяльная паста оказывается нанесённой на все контакты печатной платы.

Печатная плата с нанесённой на контактные площадки паяльной пастой

Теперь на плату можно устанавливать компоненты. SMD-компонент можно аккуратно установить на нужные контактные площадки. В радиолюбительстве установку компонентов производят вручную с помощью обычного или вакуумного пинцета, а на крупных производствах эту операцию выполняют роботы, которые могут установить до нескольких сотен деталей в минуту! Благодаря тому, что паяльная паста вязкая, компонент как бы фиксируется на своём месте, и это очень удобно.

После установки всех SMD-компонентов происходит пайка платы. Плата помещается в специальную печь, где за несколько минут нагревается примерно до 300С. Паяльная паста расплавляется, а после остывания обеспечивает механический и электрический контакт компонентов. Для того, чтобы избежать термоударов, важно настроить термопрофиль, то есть скорость нагрева и охлаждения печатной платы. В промышленности используются специальные многозонные печи, в каждой камере которых поддерживается строго заданная температура. Печатная плата, двигаясь по конвейеру, последовательно проходит все зоны печи.

Паяльные печи: промышленная (слева) и для мелкосерийной пайки (справа)

В мелкосерийном и опытном производстве используются компактные печки, в которых платы «запекаются» по одной. Радиолюбители и вовсе иногда приспосабливают для этих целей бытовые духовые шкафы, или нагревают печатную плату горячим воздухом с помощью промышленного фена. Конечно, качество пайки при таких кустарных методах очень нестабильно, но и требования к надёжности радиолюбительских конструкций обычно не высокие.

После окончания пайки плату промывают от остатков флюса, входящего в состав паяльной пасты, сушат и проверяют. Если в конструкции имеются DIP-компоненты, их припаивают в последнюю очередь, и даже на крупных радиозаводах этот процесс производится, как правило, вручную. Дело в том, что автоматизировать DIP-процесс очень сложно и дорого, именно поэтому современная радиоэлектроника в основном проектируется на SMD-компонентах.

Источник

Поделиться с друзьями
admin
О том как сделать своими руками
Adblock
detector