Смежные углы
Что такое смежные углы? Какие у них свойства?
Определение.
Смежные углы — это углы, у которых одна сторона — общая, а другие стороны лежат на одной прямой.
∠1 и ∠2 — смежные углы
Сколько смежных углов образуется при пересечении двух прямых?
При пересечении двух прямых образуется четыре пары смежных углов:
Но, так как ∠1 =∠4, ∠2=∠3 (как вертикальные), то достаточно рассмотреть только одну из этих пар.
Свойство смежных углов.
Сумма смежных углов равна 180º.
1) Даны два смежных угла. Один на 42 градуса больше другого. Найти эти углы.
∠AOC и ∠BOC — смежные,
∠AOC на 42º больше, чем ∠BOC
Пусть ∠BOC=хº, тогда ∠AOC= х+42º. Так как сумма смежных углов равна 180º, то ∠BOC+∠AOC=180º.
Значит, ∠BOC= 69º, ∠AOC=69+42=111º.
2) Найти смежные углы, если их градусные меры относятся как 4:5.
Значит, смежные углы равны 4∙20=80º и 5∙20=100º.
3) Один из углов, образованных при пересечении двух прямых, в 5 раз больше другого. Найти эти углы.
Дано: AB и CD — прямые, O — точка их пересечения,
∠AOD в 5 раз больше, чем ∠BOD
При пересечении двух прямых образуются смежные и вертикальные углы. Так как вертикальные углы равны между собой, то углы∠AOD и ∠BOD — смежные. Пусть ∠BOD=xº, тогда ∠AOD=5xº. Так как сумма смежных углов равна 180º, ∠AOD +∠BOD=180º.
Значит, ∠BOD=30º, ∠AOD=5∙30=150º.
Могут ли смежные углы быть равными?
Да. Если смежные углы равны между собой, то, так как сумма смежных углов равна 180º, каждый из них равен половине суммы, то есть 90º.
угол, смежный с прямым, есть прямой угол.
Могут ли два смежных угла быть тупыми? Острыми?
Нет. Так как градусная мера тупого угла больше 90º, то сумма двух тупых углов больше 180º. А сумма смежных углов равна 180º.
Градусная мера острого угла меньше 90º. Значит, сумма двух острых углов меньше 180º.
Таким образом, в паре смежных углов один — тупой, другой — острый (или оба прямые).
Геометрия. 7 класс
Конспект урока
Смежные и вертикальные углы. Аксиомы и теоремы
Перечень вопросов, рассматриваемых в теме:
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.
Свойства смежных углов:
Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Свойство вертикальных углов: вертикальные углы равны.
Аксиома– положение, принимаемое без доказательств.
Теоретический материал для самостоятельного изучения
Давайте построим развёрнутый угол АОС и проведём в нём луч ОВ. В результате у нас получилось два угла ∠АОВ – острый угол и ∠ВОС– тупой угол. Стороны АО и ОС – продолжают друг друга, ВО– общая сторона. Углы АОВ и ВОС – это смежные углы. На основании этого сформулируем определение смежных углов.
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.
Давайте докажем это свойство.
Укажем ещё одно свойство смежных углов.
Теперь построим две пересекающиеся прямые, АС и BD. Посмотрите, при пересечении прямых у нас получилось четыре угла: ∠АОВ, ∠АОD, ∠CОD, ∠BОC. Из них попарно являются смежными углы: ∠АОВ и ∠АОD, ∠АОD и ∠CОD, ∠CОD и ∠BОC, ∠АОВ и ∠BОC.
Углы, которые не являются смежными:
∠АОВ и ∠CОD; ∠АОD и ∠BОC. Пары этих углов называются вертикальными углами.
Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Свойство вертикальных углов: вертикальные углы равны. Убедимся в справедливости этого свойства, докажем его.
Доказательство. Посмотрим на чертёж: пары углов 1 и 2, 2 и 3, 3 и 4, 4 и 1– смежные углы. Угол 2 одновременно является смежным с углом 1 и с углом 3. По свойству смежных углов
Свойства смежных и вертикальных углов, которые мы сегодня рассмотрели– в геометрии называются теоремами. Правильность утверждения о свойстве той или иной геометрической фигуры устанавливается путём рассуждения. Это рассуждение называется доказательством. А само утверждение, которое доказывается, называется теоремой.
На предыдущих уроках вы познакомились с понятием аксиомы.
В чём же различие между аксиомой и теоремой? Ответ на этот вопрос таков: аксиома – положение, принимаемое без доказательств.
Разбор решения заданий тренировочного модуля
№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.
Используя чертёж, найдите угол ∠ВОК.
№2. Тип задания: единичный / множественный выбор.
Используя чертёж, найдите угол ∠AOD.
№3. Тип задания: выделение цветом.
Выделите верный ответ из списка:
60 0 ; 30 0 ; 75 0 ; 90 0
Смежные и вертикальные углы
Если мы продолжим сторону какого-нибудь угла за его вершину, то получим два угла (рис. 72): ∠АВС и ∠СВD, у которых одна сторона ВС общая, а две другие, АВ и ВD, составляют прямую линию.
Два угла, у которых одна сторона общая, а две другие составляют прямую линию, называются смежными углами.
Смежные углы можно получить и таким образом: если из какой-нибудь точки прямой проведём луч (не лежащий на данной прямой), то получим смежные углы.
Например, ∠АDF и ∠FDВ — углы смежные (рис. 73).
Смежные углы могут иметь самые разнообразные положения (рис. 74).
Смежные углы в сумме составляют развёрнутый угол, поэтому сумма двух смежных углов равна 180°
Отсюда прямой угол можно определить как угол, равный своему смежному углу.
Зная величину одного из смежных углов, мы можем найти величину другого смежного с ним угла.
Например, если один из смежных углов равен 54°, то второй угол будет равен:
2. Вертикальные углы.
Если мы продолжим стороны угла за его вершину, то получим вертикальные углы. На рисунке 75 углы EOF и АОС— вертикальные; углы АОЕ и СОF — также вертикальные.
Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого угла.
Пусть ∠1 = \(\frac<7><8>\) ⋅ 90°(рис. 76). Смежный с ним ∠2 будет равен 180° — \(\frac<7><8>\) ⋅ 90°, т. е. 1\(\frac<1><8>\) ⋅ 90°.
Таким же образом можно вычислить, чему равны ∠3 и ∠4.
∠4 = 180° — \(\frac<7><8>\) ⋅ 90° = 1\(\frac<1><8>\) ⋅ 90° (рис. 77).
Мы видим, что ∠1 = ∠3 и ∠2 = ∠4.
Можно решить ещё несколько таких же задач, и каждый раз будет получаться один и тот же результат: вертикальные углы равны между собой.
Однако, чтобы убедиться в том, что вертикальные углы всегда равны между собой, недостаточно рассмотреть отдельные числовые примеры, так как выводы, сделанные на основе частных примеров, иногда могут быть и ошибочными.
Убедиться в справедливости свойства вертикальных углов необходимо путём доказательства.
Доказательство можно провести следующим образом (рис. 78):
(так как сумма смежных углов равна 180°).
(так как и левая часть этого равенства равна 180°, и правая его часть тоже равна 180°).
В это равенство входит один и тот же угол с.
Если мы от равных величин отнимем поровну, то и останется поровну. В результате получится: ∠a = ∠b, т. е. вертикальные углы равны между собой.
3. Сумма углов, имеющих общую вершину.
На чертеже 79 ∠1, ∠2, ∠3 и ∠4 расположены по одну сторону прямой и имеют общую вершину на этой прямой. В сумме эти углы составляют развёрнутый угол, т. е.
На чертеже 80 ∠1, ∠2, ∠3, ∠4 и ∠5 имеют общую вершину. В сумме эти углы составляют полный угол, т. е. ∠1 + ∠2 + ∠3 + ∠4 + ∠5 = 360°.
Инструменты пользователя
Инструменты сайта
Боковая панель
Геометрия:
Контакты
Содержание
Смежные и вертикальные углы. Перпендикулярные прямые
Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными лучами. На рисунке 20 углы АОВ и ВОС смежные.
Теорема 1. Сумма смежных углов равна 180°.
Из теоремы 1 следует, что если два угла равны, то смежные с ними углы равны.
Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами сторон другого. Углы АОВ и COD, BOD и АОС, образованные при пересечении двух прямых, являются вертикальными (рис. 2).
Теорема 2. Вертикальные углы равны.
Доказательство. Рассмотрим вертикальные углы АОВ и COD (см. рис. 2). Угол BOD является смежным для каждого из углов АОВ и COD. По теореме 1 ∠ АОВ + ∠ BOD = 180°, ∠ COD + ∠ BOD = 180°.
Отсюда заключаем, что ∠ АОВ = ∠ COD.
Следствие 1. Угол, смежный с прямым углом, есть прямой угол.
Рассмотрим две пересекающиеся прямые АС и BD (рис.3). Они образуют четыре угла. Если один из них прямой (угол 1 на рис.3), то остальные углы также прямые (углы 1 и 2, 1 и 4 — смежные, углы 1 и 3 — вертикальные). В этом случае говорят, что эти прямые пересекаются под прямым углом и называются перпендикулярными (или взаимно перпендикулярными). Перпендикулярность прямых АС и BD обозначается так: AC ⊥ BD.
Серединным перпендикуляром к отрезку называется прямая, перпендикулярная к этому отрезку и проходящая через его середину.
Рассмотрим прямую а и точку А, не лежащую на ней (рис.4). Соединим точку А отрезком с точкой Н прямой а. Отрезок АН называется перпендикуляром, проведенным из точки А к прямой а, если прямые АН и а перпендикулярны. Точка Н называется основанием перпендикуляра.
Справедлива следующая теорема.
Теорема 3. Из всякой точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
Для проведения на чертеже перпендикуляра из точки к прямой используют чертежный угольник (рис.5).
Замечание. Формулировка теоремы обычно состоит из двух частей. В одной части говорится о том, что дано. Эта часть называется условием теоремы. В другой части говорится о том, что должно быть доказано. Эта часть называется заключением теоремы. Например, условие теоремы 2 — углы вертикальные; заключение — эти углы равны.
Всякую теорему можно подробно выразить словами так, что ее условие будет начинаться словом «если», а заключение — словом «то». Например, теорему 2 можно подробно высказать так: «Если два угла вертикальные, то они равны».
Пример 1. Один из смежных углов равен 44°. Чему равен другой?
Пример 2. Пусть на рисунке 21 угол COD равен 45°. Чему равны углы АОВ и АОС?
Пример 3. Найти смежные углы, если один из них в 3 раза больше другого.
Пример 4. Сумма двух вертикальных углов равна 100°. Найти величину каждого из четырех углов.
Отыскание смежных углов треугольника. Пример 5
В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°.
Рецепты домашней выпечки с фото — пошаговые мастер-классы
Кулинарный портал о выпечке
Как можно показать что углы смежные. Смежные и вертикальные углы. Перпендикулярные прямые. Связь математики с музыкой
Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными лучами. На рисунке 20 углы АОВ и ВОС смежные.
Сумма смежных углов равна 180°
Теорема 1. Сумма смежных углов равна 180°.
Из теоремы 1 следует, что если два угла равны, то смежные с ними углы равны.
Вертикальные углы равны
Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами сторон другого. Углы АОВ и COD, BOD и АОС, образованные при пересечении двух прямых, являются вертикальными (рис. 2).
Теорема 2. Вертикальные углы равны.
Доказательство. Рассмотрим вертикальные углы АОВ и COD (см. рис. 2). Угол BOD является смежным для каждого из углов АОВ и COD. По теореме 1 ∠ АОВ + ∠ BOD = 180°, ∠ COD + ∠ BOD = 180°.
Отсюда заключаем, что ∠ АОВ = ∠ COD.
Следствие 1. Угол, смежный с прямым углом, есть прямой угол.
Серединным перпендикуляром к отрезку называется прямая, перпендикулярная к этому отрезку и проходящая через его середину.
Рассмотрим прямую а и точку А, не лежащую на ней (рис.4). Соединим точку А отрезком с точкой Н прямой а. Отрезок АН называется перпендикуляром, проведенным из точки А к прямой а, если прямые АН и а перпендикулярны. Точка Н называется основанием перпендикуляра.
Справедлива следующая теорема.
Теорема 3. Из всякой точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
Для проведения на чертеже перпендикуляра из точки к прямой используют чертежный угольник (рис.5).
Пример 1. Один из смежных углов равен 44°. Чему равен другой?
Пример 2. Пусть на рисунке 21 угол COD равен 45°. Чему равны углы АОВ и АОС?
Пример 3. Найти смежные углы, если один из них в 3 раза больше другого.
Решение. Обозначим градусную меру меньшего угла через х. Тогда градусная мера большего угла будет Зх. Так как сумма смежных углов равна 180° (теорема 1), то х + Зх = 180°, откуда х = 45°.
Значит, смежные углы равны 45° и 135°.
Пример 4. Сумма двух вертикальных углов равна 100°. Найти величину каждого из четырех углов.
краткое содержание других презентаций
— (лат. solutio triangulorum) исторический термин, означающий решение главной тригонометрической задачи: по известным данным о треугольнике (стороны, углы и т. д.) найти остальные его характеристики. Треугольник может располагаться на… … Википедия
— (мат.). Если из точки О на данной плоскости проведем прямые ОА и 0В, то получим угол АОВ (черт. 1). Черт. 1. Точка 0 наз. вершиною угла, а прямые ОА и 0В сторонами угла. Предположим, что даны два угла ΒΟΑ и Β 1 Ο 1 Α 1. Наложим их так, чтобы… …
— (мат.). Если из точки О на данной плоскости проведем прямые ОА и 0В, то получим угол АОВ (черт. 1). Черт. 1. Точка 0 наз. вершиною угла, а прямые ОА и 0В сторонами угла. Предположим, что даны два угла ΒΟΑ и Β1Ο1Α1. Наложим их так, чтобы вершины О … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
— (тригонометрическая съемка), в навигации и топографической съемке метод определения расстояния. Площадь съемки делится на треугольники. Затем ТЕОДОЛИТОМ измеряют основание треугольника и прилежащие углы. Расстояния от концов основания до… … Научно-технический энциклопедический словарь
Прибор, служащий для определения расстояния без непосредственного его измерения. Д. употребляются как в геодезии на съемках для ускорения работы в тех случаях, когда расстояние не требуется знать весьма точно, так и в военном деле при стрельбе,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… … Энциклопедия Кольера
— (др. греч. παραλληλόγραμμον от παράλληλος параллельный и γραμμή линия) это четырёхуго … Википедия
I Матка Матка (uterus, metra) непарный мышечный полый орган, в котором происходят имплантация и развитие зародыша; расположен в полости малого таза женщины. Органогенез Развитие М. во внутриутробном периоде начинается при длине плода около 65 мм … Медицинская энциклопедия
Каждый угол, в зависимости от его величины, имеет своё название:
Вид угла | Размер в градусах | Пример |
---|---|---|
Острый | Меньше 90° | |
Прямой | Равен 90°. | |
Тупой | Больше 90°, но меньше 180° | |
Развёрнутый | Равен 180° Развёрнутый угол равен сумме двух прямых углов, а прямой угол составляет половину развёрнутого угла. | |
Выпуклый | Больше 180°, но меньше 360° | |
Полный | Равен 360° |
Сумма смежных углов равна 180°.
Вертикальные углы равны.
Докажем, что вертикальные углы равны:
Сумма ∠1 и ∠2 составляет развёрнутый угол. И сумма ∠3 и ∠2 составляет развёрнутый угол. Значит, эти две суммы равны:
Иногда для обозначения углов используются строчные латинские буквы (a, b, c, …) и цифры.
На чертежах углы отмечаются небольшими одинарными, двойными или тройными дужками, проходящими по внутренней области угла с центрами в вершине угла. Равенство углов может отмечаться одинаковой кратностью дужек или одинаковым количеством поперечных штрихов на дужке. Если необходимо указать направление отсчёта угла, оно отмечается стрелкой на дужке. Прямые углы отмечаются не дужками, а двумя соединёнными равными отрезками, расположенными таким образом, что вместе со сторонами они образуют небольшой квадрат, одна из вершин которого совпадает с вершиной угла.
Угловая мера
Некоторые плоские углы имеют специальные названия. Кроме вышеназванных единиц измерения (радиан, румб, градус и тому подобное), к ним относятся:
Направление отсчёта углов
Стрелкой показано направление отсчёта углов
Телесный угол
Телесными углами являются, в частности, следующие геометрические тела:
Угол между кривыми
Как в планиметрии, так и в стереометрии, а также в ряде других геометрий можно определить угол между гладкими кривыми в точке пересечения: по определению, его величина равна величине угла между касательными к кривым в точке пересечения.
Угол и скалярное произведение
Угол в метрическом пространстве
Также существует ряд работ, в которых вводится понятие угла между элементами метрического пространства.
В 1932 году Вильсон рассмотрел в качестве угла следующее выражение:
Нетрудно видеть, что введённое выражение всегда имеет смысл и удовлетворяет трём аксиомам Менгера.
Кроме того, угол Вильсона обладает тем свойством, что в евклидовом пространстве он эквивалентен углу между элементами y − x <\displaystyle y-x>и z − x <\displaystyle z-x>в смысле евклидова пространства.